

BSN Spartan Developer Manual

Version 1.0.2

January 13th, 2023

BSN Spartan Developer Manual

I

Contents

1 OVERVIEW .. 1

1.1 WHAT IS BSN SPARTAN ... 1

1.1.1 Glossary ... 1

1.1.2 What is blockchain .. 2

1.1.3 What is Non-Cryptocurrency Public Chain 2

1.1.4 What is Default Chain ... 2

1.1.5 What is a Wallet ... 3

1.1.6 Full Node & Consensus Node ... 3

1.2 ROLES ... 3

1.2.1 Data Center Operator .. 3

1.2.2 Foundation Member .. 3

1.2.3 End-user ... 3

1.3 WHY BSN SPARTAN .. 4

1.3.1 Public vs. Private ... 4

1.3.2 Cryptocurrency vs. Non-Cryptocurrency .. 4

1.3.3 Centralized vs. Decentralized .. 4

1.3.4 Blockchain vs. Infrastructure .. 5

2 GETTING STARTED ... 5

2.1 GET A WALLET ADDRESS .. 5

2.1.1 An Existing secp256k1 Wallet Address .. 5

2.1.2 Using MetaMask ... 5

2.2 GET CHAIN ACCESS INFORMATION .. 6

2.3 GATEWAY ACCESS INSTRUCTION ... 7

2.3.1 Key Parameters .. 7

2.3.2 Gateway Request Format .. 7

BSN Spartan Developer Manual

II

2.4 TOP UP GAS CREDIT .. 8

2.4.1 Check the email of Submitted Order ... 10

2.4.2 Check the email of Successful Payment ... 11

2.4.3 Check the email of Successful Top-up .. 11

2.4.4 Check the Currency or USDC Refund (If Top-up Failed) 11

2.5 CONTRACT MARKETPLACE ... 11

2.5.1 BSN Official Contract Services .. 11

2.5.2 BSN Certified Smart Contracts ... 12

2.5.3 BSN Beginner Smart Contracts .. 12

2.5.4 BSN Smart Contract Open Market ... 12

2.6 SPARTAN OFFICIAL SMART CONTRACTS (OPTIONAL) 13

2.6.1 Spartan DID ... 13

2.6.2 SpartanUSD Stablecoin Smart Contract ... 14

2.6.3 Spartan Official NFT Smart Contract ... 22

3 INFORMATION ON THE NON-CRYPTOCURRENCY PUBLIC

CHAINS ... 42

3.1 SPARTAN-I CHAIN (POWERED BY NC ETHEREUM) 42

3.1.1 About Spartan-I Chain (Powered by NC Ethereum) 42

3.1.2 Ethereum and Geth Documentation .. 42

3.2 SPARTAN-II CHAIN (POWERED BY NC COSMOS) 43

3.2.1 About Spartan-II Chain (Powered by NC Cosmos) 43

3.2.2 Resources ... 44

3.3 SPARTAN-III CHAIN (POWERED BY NC POLYGONEDGE) 44

3.3.1 About Spartan-III Chain (Powered by NC PolygonEdge) 44

3.3.2 Resources ... 44

4 FAQS ... 46

4.1 FREQUENTLY ASKED QUESTIONS .. 46

BSN Spartan Developer Manual

III

4.2 WHAT IS NTT? .. 46

4.3 WHAT IS AN NTT WALLET? .. 46

4.4 WHAT IS A WALLET ADDRESS?.. 46

4.5 WHAT IS A PRIVATE KEY? .. 46

4.6 WHAT IS A SPARTAN VIRTUAL DATA CENTER? ... 46

4.7 WHAT IS GAS CREDIT? .. 47

BSN Spartan Developer Manual

1 | 51

1 Overview

1.1 What is BSN Spartan

1.1.1 Glossary

Glossary Definition

Non-Cryptocurrency

Public Chain (NC Public

Chain)

A Non-Cryptocurrency Public Chain is a transformed public chain framework

based on an existing public chain. Gas Credit transfers are not permitted between

standard wallets. There will be no cryptocurrency incentives for mining or

participating in consensus.

End-user An end-user refers to a person or company that deploys or calls smart contracts

on the BSN Spartan Network.

Virtual Data Center A Virtual Data Center is a set of locally installed software systems that contains

one or more registered full nodes of different NC Public Chains. Each Virtual

Data Center has one NTT wallet and is eligible to receive Node Establishment

and Data Center Monthly Incentives.

Foundation Member Foundation Members refer to the members of the BSN Foundation. Each

member must operate a Governance Data Center, which contains all NC Public

Chain consensus nodes, and has the right to vote on governance matters of the

BSN Spartan Network.

Consensus Node Nodes are used for proposing new blocks and voting for consensus mechanisms

on NC Public Chains. Consensus Nodes can only be installed on Governance

Data Centers operated by BSN Foundation members.

Full Node A Full Node on an NC Public Chain does not participate in consensus. Upon

registering a Full Node on the BSN Spartan Network, it synchronizes all data on

the specific chain. The data center to which the Full Node belongs will receive

relevant incentives under the Node Establishment Incentive Program.

Default Chain The Default Chain is the only NC Public Chain on the BSN Spartan Network

with NTT governance smart contracts. In addition to providing all regular NC

Public Chain services, it also hosts the NTT economic mechanism and

governance system of the BSN Spartan Network. The current default chain is the

Spartan-I Chain (Powered by NC Ethereum).

Spartan-I Chain

(Powered by NC

Ethereum)

The Spartan-I Chain is an NC Public Chain version of Ethereum and serves as

the default chain of the BSN Spartan Network.

Spartan-II Chain

(Powered by NC Cosmos)

The Spartan-II Chain is an NC Public Chain version of Cosmos.

Spartan-III Chain

(Powered by NC

PolygonEdge)

The Spartan-III Chain is an NC Public Chain version of Polygon Edge.

Gas In NC Public Chains, Gas is the amount of resources consumed during a

transaction or smart contract execution.

Gas Credit In a similar fashion to cryptocurrencies, Gas Credits are used as a means of

paying the Gas fee on NC Public Chains. However, Gas Credits cannot be

transferred between standard wallets. Only the Data Center Operator's NTT

wallet can be used to purchase Gas Credits with NTT.

Non-Tradable Token

(NTT)

A Non-Tradable Token (NTT) is a digital token that is issued on the default chain

of the BSN Spartan Network. Each BSN Spartan data center has only one

registered NTT wallet to manage and hold NTT, which can be purchased with

fiat currency, designated stablecoins or acquired through incentive programs.

BSN Spartan Developer Manual

2 | 51

NTT can be used to purchase Gas Credits on any NC Public Chain of the BSN

Spartan Network. NTT can neither be traded nor transferred between data

centers.

Wallet Wallet refers to the wallet address or smart contract address of an NC Public

Chain on the BSN Spartan Network, which can be generated arbitrarily by users.

The wallets are used to hold non-transferable Gas Credits.

NTT Wallet As a special type of Default Chain wallet, the NTT Wallet refers to the only

wallet address owned by the Virtual Data Center Operator on the BSN Spartan

Network, which can be used to purchase Gas Credits with NTT or receive NTT

incentives.

Gas Credit Master Wallets A Gas Credit Master Wallet refers to the wallet address, or smart contract address

used to mint, top up, or destroy the Gas Credits of NC Public Chains. A Gas

Credit Master Wallet can only be generated by the Spartan Network operator with

permission from the BSN Foundation.
Governance System The governance system is an off-chain system installed locally by each

Foundation member and is responsible for managing the voting and governance

of the Spartan Network.

Foundation Website The official website of the BSN Foundation at https://www.bsn.foundation.

1.1.2 What is blockchain

" A blockchain is a type of Digital Ledger Technology (DLT) that consists of growing list of records,

called blocks, which are securely linked together using cryptography. "

Blockchain technology was used to build digital ledgers when it was first invented, but with the

continuous upgrading and iteration of the technology, various innovative applications based on

blockchain continue to emerge, and NFTs are one of the most common applications. The

emergence of NFTs clearly tells the world that the potential of blockchain technology is far more

than a small ledger, but a new generation of data management system that could replace traditional

databases. For a healthy and secure blockchain system, the data on the chain cannot be secretly

tampered with, nor can it be accidentally deleted. Users can easily verify the data's authenticity

and accuracy, which greatly reduces the cost of communication, increases trust and improves the

efficiency of data use. In addition, in our opinion, blockchain will also become a pivotal

technology to promote the evolution of traditional private IT systems to new public IT systems.

1.1.3 What is Non-Cryptocurrency Public Chain

A Non-Cryptocurrency Public Chain is a transformed public chain framework based on an existing

public chain. Gas Credit transfers are not permitted between standard wallets. There are no

cryptocurrency incentives for mining or participating in consensus.

1.1.4 What is Default Chain

The Default Chain is the only NC Public Chain on the BSN Spartan Network with NTT governance

https://www.bsn.foundation/

BSN Spartan Developer Manual

3 | 51

smart contracts. In addition to providing all regular NC Public Chain services, the chain also hosts

the NTT economic mechanism and governance system of the BSN Spartan Network. The current

default chain is the Spartan-I Chain (Powered by NC Ethereum).

1.1.5 What is a Wallet

Wallet refers to the wallet address or smart contract address of an NC Public Chain on the BSN

Spartan Network, which can be generated arbitrarily by users. The wallets are used to hold non-

transferable Gas Credits.

1.1.6 Full Node & Consensus Node

⚫ Full Nodes: A Full Node on a NC Public Chain does not participate in consensus. Upon

registering a Full Node on the BSN Spartan Network, it synchronizes all data on the specific

chain. The data center to which the Full Node belongs will receive relevant incentives under

the Node Establishment Incentive Program.

⚫ Consensus/Validator Nodes: Nodes are used for proposing new blocks and voting for

consensus mechanisms on NC Public Chains. Consensus Nodes can only be installed on

Governance Data Centers operated by BSN Foundation members.

1.2 Roles

1.2.1 Data Center Operator

A Data Center Operator is the operator of a Virtual Data Center. A Virtual Data Center is a set of

locally installed software systems that contains one or more registered full nodes of different NC

Public Chains. Each Virtual Data Center has one NTT wallet and is eligible to receive Node

Establishment and Data Center Monthly Incentives.

1.2.2 Foundation Member

Foundation Members refers to the members of the BSN Foundation. Each member must o

perate a Governance Data Center, which contains all NC Public Chain consensus nodes a

nd has the right to vote on governance matters of the BSN Spartan Network.

1.2.3 End-user

An end-user refers to a person or company that deploys or calls smart contracts on the BSN Spartan

Network.

https://www.bsn.foundation/

BSN Spartan Developer Manual

4 | 51

1.3 Why BSN Spartan

The purpose of the BSN Spartan project is to develop, build and promote a global decentralized

cloud service network that consists of non-cryptocurrency public chains for enterprise uses and

utilities without any speculative elements.

1.3.1 Public vs. Private

Traditional IT systems are built on independent and non-public databases, each company has its

own unique data storage mechanism and structure, and the cost of data exchange between systems

is very high. Even if it is public data, a user must go to various websites to download and collect

the data. This process is destined to become unacceptable in the future, with ever-increasing

demands for digitization.

The Spartan network can solve this problem to a certain extent. Due to the openness of blockchain

data and the characteristics of the consensus mechanism, all data centers using the Spartan network

will be able to easily share data because the data is only logically isolated; as long as permissions

are provided to each other, the data can be exchanged. Complex data migration will be a thing of

the past. Using the Spartan network, a user just needs to connect to the network and the data will

be synchronized and accessed from anywhere with any device. On any full node a user can obtain

all public data generated by different end users. This will greatly improve the efficiency of data

acquisition and use.

1.3.2 Cryptocurrency vs. Non-Cryptocurrency

Cost control is a critical task for traditional industries and costs must be predictable. However, the

value of cryptocurrencies that traditional public chains need to consume for normal transactions

fluctuates. Yesterday, a transaction may cost 1 USD and today it costs 5 USD, and this fluctuation

is unpredictable. Due to this volatility, almost no traditional industries have built their businesses

using blockchain technology. The three non-cryptocurrency public chains launched by the Spartan

Network fundamentally eliminate the volatility of costs to use the chains by prohibiting the transfer

of Gas Credits between standard wallets. Furthermore, Gas Credit can only be purchased with NTT,

which is anchored to fiat currency. The cost becomes predictable. This makes Spartan Network

capable of supporting traditional industries and organizations can use Spartan Network as their

underlying infrastructure with confidence they can manage costs effectively.

1.3.3 Centralized vs. Decentralized

BSN Spartan Developer Manual

5 | 51

When a user interacts with a centralized system, all the requests initiated to the system and all the

information entered is owned and controlled by the system’s backend. This centralized architecture

allows operators to easily modify any data, and it is difficult for users to verify the authenticity

and accuracy of the data. The Spartan Network benefits from blockchain’s consensus mechanism,

which prevents data from being secretly tampered after being uploaded to the chain and allows

users to easily verify any data. At the same time, Spartan also strictly implements decentralized

governance and all new or changed governance rules are voted by all consensus parties.

1.3.4 Blockchain vs. Infrastructure

Compared with traditional public chains, the Spartan Network is more scalable and provides

technology diversity. A single public chain is often subject to various performance bottlenecks,

resulting in a long processing cycle for transactions on the chain. The Spartan Network is a multi-

chain ecosystem and the data exchange between each chain is realized through the interchain

services. At the same time, different chain frameworks have their own characteristics and often

have their own advantages. Looking ahead to the future, different chains may be suitable for

different industries and fields. Users can choose according to their own needs.

2 Getting Started

2.1 Get a Wallet Address

2.1.1 An Existing secp256k1 Wallet Address

If you already have a private key generated by the secp256k1 algorithm and its corresponding

wallet address, such as an Ethereum wallet address, you can use that wallet address directly.

2.1.2 Using MetaMask

You can download MetaMask and create an account for free.

https://metamask.io/download/

BSN Spartan Developer Manual

6 | 51

The account address in MetaMask can be used as a Wallet Address, and the corresponding private

key is the same.

2.2 Get Chain Access Information

Enter your email address and we will send you the access information of the Non-Cryptocurrency

public chains.

Select a chain you want to access, then input the email address and get the verification code. Then,

BSN Spartan Developer Manual

7 | 51

click the "Confirm" button to submit your application.

Shortly, BSN Spartan Official Developer Portal will notify you by email and you are able to access

the BSN Spartan Network via the nodes provided by the Spartan Network Official Data Center.

You can setup your own Data Center, for more information, please refer to Quick Start.

2.3 Gateway Access Instruction

2.3.1 Key Parameters

⚫ Access key: accessKey, created in the portal, the user cannot access the blockchain without

the key.

⚫ Target chain type: chainType, configured in the data center system, the message cannot be

forwarded if it's wrong.

⚫ Protocol: protocol, message-passing protocol, e.g. http, grpc.

2.3.2 Gateway Request Format

2.3.2.1 HTTP Request

https://[domain:port]/api/[accessKey]/[chainType]/rpc/[chain_path]

Example: https://[domain:port]/api/015416c06ef74ac38a92521792f97e7d/spartanone/rpc

2.3.2.2 WebSocket Request

wss://[domain:port]/api/[accessKey]/[chainType]/ws/[chain_path]

Example: wss://[domain:port]/api/015416c06ef74ac38a92521792f97e7d/spartanone/ws

2.3.2.3 gRPC Request

[domain:port]

Request header:

x-api-key: [accessKey]

x-api-chain-type: [chainType]

https://www.spartan.bsn.foundation/main/quick-start

BSN Spartan Developer Manual

8 | 51

Note:

⚫ [domain]: domain name, you can apply it by yourself.

⚫ [port]: the port number to distinguish different protocols, e.g. http, grpc, you can define it

yourself.

⚫ [chain_path]: is not required, can be null, user can add this parameter if needed.

⚫ The access information can be found in the notification email of Network Access Information.

2.4 Top Up Gas Credit

Any Wallet in the Non-Cryptocurrency Public Chains must consume Gas Credit when initiating a

transaction. For example, if a user wants to initiate a transaction, the user’s Wallet needs to

consume Gas Credit. At this time, users must use fiat currency or USDC to top up the Gas Credit

of the Wallet to ensure that the transaction can proceed normally.

Operation Steps

Visit BSN Spartan Official Developer Portal and click "Top Up Gas Credit":

⚫ Select a chain, enter your wallet address and confirm it. Then, enter the amount of Gas Credit

you would like to top up. Enter an email address and verify it by entering the verification code.

The next step is to choose the payment method. BSN Spartan Official Developer Portal

https://spartan.bsnbase.io/
https://spartan.bsnbase.io/main/top-up-gas

BSN Spartan Developer Manual

9 | 51

supports 3 methods: Remittance, Stripe or Coinbase (pay in USDC);

⚫ Click the "Confirm" button, the system will generate an order number and jump to the

payment platform you selected. Complete the payment on the pop-up window.

Pay by Remittance:

We will send you an email with the payment information.

Pay by Stripe:

As shown in the above figure, confirm the invoice and enter your card information. After the

payment is completed, you will receive a notification by email.

Note: When paying with Stripe, you cannot exceed $999,999.99 in a single transaction.

Pay by Coinbase:

BSN Spartan Developer Manual

10 | 51

You can make the payment in USDC. After the payment is successful, you will receive a

notification by email.

Attention: All payments above are made by the third-party payment platform, and the Spartan

Network Data Center Portal will never obtain your account information.

2.4.1 Check the email of Submitted Order

Users will receive an email notification when the order is submitted. You may also complete the

payment via the link in the email.

BSN Spartan Developer Manual

11 | 51

2.4.2 Check the email of Successful Payment

Users will receive an email notification when the payment succeeds.

2.4.3 Check the email of Successful Top-up

Users will receive an email notification when the Gas Credit top-up succeeds. Users can check the

Gas Credit information through the link in the email.

2.4.4 Check the Currency or USDC Refund (If Top-up Failed)

Please make sure the Currency or USDC is correctly refunded.

2.5 Contract Marketplace

2.5.1 BSN Official Contract Services

BSN Spartan Developer Manual

12 | 51

This group of smart contracts is already deployed on the Spartan Network by BSN Foundation or

BSN-authorized third parties. They provide some most basic and common functions and methods

of blockchain smart contracts. Developers can directly call these smart contracts without

rebuilding similar functions again. Most of these smart contracts are open source. BSN official

contract services are default listed in all data center end-user portals and integrated into the data

center APIs/SDKs for easy access.

2.5.2 BSN Certified Smart Contracts

This group of smart contracts is fully open source and can be downloaded, modified, and

redeployed onto BSN Spartan Network for any commercial or personal use. The BSN team has

reviewed and certified these smart contracts and encourages BSN Spartan users and developers to

reuse these brilliant smart contracts as they see fit. Some of these open-source smart contracts from

BSN Official Services and BSN Beginner Contracts are also included.

2.5.3 BSN Beginner Smart Contracts

This group of smart contracts is specifically designed and consolidated together for beginners to

learn smart contract development based on the solidity programming language. These smart

contracts contain some of the most basic and common examples, methods, and functions, such as

tokens, NFT, storage, DID, Multisignature, etc. It is encouraged that beginners should not only

review the codes but also modify whatever they see fit and deploy different versions of BSN

Spartan Network to fully test and practice different business scenarios based on smart contract

technologies.

2.5.4 BSN Smart Contract Open Market

In order to help you understand the Spartan network and smart contracts more intuitively and

comprehensively, we have collected a large number of open-source smart contract projects and

verified their compatibility through actual deployment of the Spartan network. You can directly

deploy the smart contract projects that fit your business needs in the Spartan network or modify

some of the smart contracts to meet your business needs and then deploy them. Please double-

check the copyright/copyleft statements of these open-source projects to make sure you fully

understand the related IP rights before use.

For a detailed introduction to smart contract marketplace, please click here.

https://www.spartan.bsn.foundation/main/contract#ContractServices

BSN Spartan Developer Manual

13 | 51

2.6 Spartan Official Smart Contracts (Optional)

These Spartan Network Official Smart Contracts are pre-deployed smart contracts managed by

Spartan Network operators for performing different tasks. They are open to all end-users to call

and execute. These smart contracts are also open-source on Spartan Network GitHub and can be

used for developers to study as use cases. We welcome interested developers to deploy more

commercial smart contracts for specific business models and scenarios.

2.6.1 Spartan DID

2.6.1.1 Overview

With blockchain technology as the cornerstone and W3C DID as the specification, Spartan DID

Services achieve decentralized on-chain mapping of real entities, thus achieving the ability to

provide digital identity and digital credential interaction for individuals/organizations.

2.6.1.2 Roles

In the DID ecosystem, there are three roles: User, Issuer, and Verifier

⚫ User: Any individual/organization/entity with a digital identity on the chain. Any entity object

can create and manage its DID through the developer’s own project.

⚫ Issuer: The individual or organization that can issue the digital credentials. For example, a

university can issue a digital diploma to a student; then the university is an issuer.

⚫ Verifier: Also known as a business party, is an individual or organization that uses digital

credentials. After being authorized by the user, the verifier can verify the identity of the user

or their digital credentials. For example, when a company hires someone, it needs to verify

his college diploma, then the company is a verifier.

2.6.1.3 Components

The DID system consists of three components: SDK, Service and Smart Contract. The SDK can

BSN Spartan Developer Manual

14 | 51

be integrated into the developer’s own project; Service is responsible for logic processing and

communication with nodes; the smart contract is deployed on the chain, and the methods in the

contract are called by the DID Service.

2.6.1.4 Functions and features

⚫ Deployed on the Spartan-I Chain (NC Ethereum), the DID Service builds a decentralized

digital identity management system, which facilitates autonomous participation and

affirmative collaboration among users, issuers, and verifiers.

⚫ Provide a unified decentralized digital identity management, including identifier creation,

update, and verification functions.

⚫ Provide mechanisms for issuance, authorization, verification, and revocation of user data

credentials.

⚫ Provide the SDK that access to API services, integrate object encapsulation, signature,

verification, and other methods for easy docking by developers.

For a detailed introduction to DID, please refer to GitHub.

And, BSN-Spartan has also completely open sourced IdentityHub, users can install it locally and

store their own private data. For more details, please refer to GitHub.

2.6.2 SpartanUSD Stablecoin Smart Contract

The SpartanUSD Stablecoin is an ERC20-based Token, issued by the Spartan Network operators

officially through the stablecoin contract on Spartan-III Chain (NC PolygonEdge), which is strictly

anchored to USDC in a ratio of 1:1. The basic functions in the stablecoin contract are Mint,

Transfer, Withdraw and Burn. The circulation of the stablecoin will be strictly controlled within a

range not greater than the amount of USDC pledged by the stablecoin users into the USDC wallet

on the Polygon mainnet.

2.6.2.1 Basic Information

⚫ SpartanUSD Contract Address: 0x1fD89dc1f4Ffbb797d471D6BB0dbb8EfEABdbe9c on

the Spartan-III chain

⚫ USDC Pledge Wallet Address: 0x764b33c01a611597438f0286e946633685ed3d2f on

https://github.com/BSN-Spartan/DID/tree/main/docs
https://github.com/BSN-Spartan/IdentityHub

BSN Spartan Developer Manual

15 | 51

Polygon (Matic Network)

⚫ Maximum Counting Accuracy: 6 Decimals (0.000001 SUSD)

⚫ Name: SpartanUSD

⚫ Symbol: SUSD

⚫ Transfer Service Fee: 0.1% of the amount of SUSD transferred

⚫ Withdraw Service Fee: 0.003 SUSD

2.6.2.2 Common Functions

2.6.2.2.1 Mint SpartanUSD

By calling the official USDC contract (contract address: 0x2791Bca1f2de4661ED88A30

C99A7a9449Aa84174 on Polygon (Matic Network), the user uses the transfer() method t

o transfer USDC equal to the expected issuance amount of SUSD to the account (accou

nt address: 0x764b33c01a611597438f0286e946633685ed3d2f on Polygon (Matic Networ

k)).

Spartan obtains transaction information by listening related events, and the SpartanUSD c

ontract will be called to mint the same amount of SUSD to the user account of the Spa

rtan-III chain (Powered by NC PolygonEdge) through the minter account of SpartanUSD.

 The Spartan-III user account address is the same as the address of the sender account

of the USDC transaction on Polygon.

Note: Please ensure the security of the private key of the Polygon account of the USDC transfer

transaction sender, which will also be used as the private key of the Spartan-III wallet receiving

SUSD.

2.6.2.2.2 Transfer SpartanUSD

The user can transfer their SpartanUSD asset to any other Spartan-III wallet by calling t

he SUSD contract’s transfer() method (contract address: 0x1fD89dc1f4Ffbb797d471D6B

B0dbb8EfEABdbe9c on the Spartan-III Chain).

The transfer() method will charge a service fee of 0.1% of the caller's transaction amount, and the

service fee will not exceed 10 USD.

BSN Spartan Developer Manual

16 | 51

⚫ Input Parameters: Receiver Wallet Address (on the Spartan-III chain), Transfer Amount

(Please enter a multiple of 10000, 10000 = 0.01SUSD);

Note: The Transfer Amount needs to be a value which is a multiple of 10000, because SUSD’s

accuracy is 6 decimals, so, the value of 10000 is equivalent to 0.01 SUSD.

⚫ Output Parameters: A bool parameter shows successful or failed;

⚫ Method Definition: transfer (address to, uint256 amount) returns (bool);

⚫ Event Parameters: Sender Wallet Address, Receiver Wallet Address, Transfer Amount,

Service Fee;

⚫ Event Definition: Transfer (msg.sender, to, amount, serviceCharge);

⚫ Example:

func TestTransfer(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 auth, err := eth.GenAuth(cli, PrivateKey)

 if err != nil {

 log.Logger.Error(err)

 }

 tx, err := instance.Transfer(auth, common.HexToAddress(to), new(big.Int).SetUint64(amoun

t))

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("tx Hash:", tx.Hash().String())

}

2.6.2.2.3 Withdraw SpartanUSD

The user can withdraw their SpartanUSD asset to USDC which will be transferred to a Polygon

(Matic Network) wallet by calling the SUSD contract’s withdraw() method (contract address:

0x1fD89dc1f4Ffbb797d471D6BB0dbb8EfEABdbe9c on the Spartan-III Chain).

BSN Spartan Developer Manual

17 | 51

The withdraw() method will charge a constant service fee of 0.003 SUSD.

⚫ Input Parameters: Receiver Account Address (on Polygon (Matic Network)), Withdraw

Amount;

Note: The SUSD balance of the sender account address needs to be greater than the total

price of the transaction (withdraw amount + withdraw service fee).

⚫ Output Parameters: None;

⚫ Method Definition: withdraw (address payee, uint256 amount);

⚫ Event Parameter: Sender Wallet Address, Withdraw Amount, Service Fee, Receiver Wallet

Address (on Polygon (Matic Network));

⚫ Event Definition: Withdraw (msg.sender, amount, _withdrawFee, payee);

⚫ Example:

func TestWithdraw(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 auth, err := eth.GenAuth(cli, PrivateKey)

 if err != nil {

 log.Logger.Error(err)

 }

 tx, err := instance.Withdraw(auth, common.HexToAddress(payee), new(big.Int).SetUint64(a

mount))

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("tx Hash:", tx.Hash().String())

}

2.6.2.2.4 Check SpartanUSD Balance

Users can check their SpartanUSD balance by calling the SUSD contract’s balanceOf() m

ethod.

BSN Spartan Developer Manual

18 | 51

⚫ Input Parameters: Target Account Address (on the Spartan-III chain);

⚫ Output Parameters: Balance;

⚫ Method Definition: balanceOf (address account) view returns (uint256);

⚫ Example:

func TestBalanceOf(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 balance, err := instance.BalanceOf(nil, common.HexToAddress(Address))

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("balance:", balance.String())

}

2.6.2.2.5 Check the Circulation of SpartanUSD

Users can check the total circulation of SpartanUSD by calling the SUSD contract’s totalSupply()

method.

After the mint() method, the total circulation will be increased by the amount of mint and after the

withdraw() or burn() method, the total circulation will be decreased by the amount of withdraw or

burn.

⚫ Input Parameters: None;

⚫ Output Parameters: The Total Circulation of SUSD;

⚫ Method Definition: totalSupply() view returns (uint256);

⚫ Example:

func TestTotalSupply(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

BSN Spartan Developer Manual

19 | 51

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 totalSupply, err := instance.TotalSupply(nil)

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("totalSupply:", totalSupply.String())

}

2.6.2.2.6 Check the Maximum Transaction Service Fee

Users can check the maximum transaction service fee by calling the SUSD contract’s

TestMaximumTransferCharge() method.

The return value is counted in units of 0.000001 SUSD (6 decimals), for example, 1000000 means

1 USUD.

⚫ Input Parameters: None;

⚫ Output Parameters: The maximum transaction service fee;

⚫ Method Definition: maximumTransferCharge() view returns (uint256);

⚫ Example:

func TestMaximumTransferCharge(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 maximumTransferCharge, err := instance.MaximumTransferCharge(nil)

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("maximumTransferCharge:", maximumTransferCharge.String())

}

BSN Spartan Developer Manual

20 | 51

2.6.2.2.7 Check the Transaction Service Fee Ratio

Users can check the transaction service fee ratio by calling the SUSD contract’s getTransferRatio()

method.

The return value is counted in units of 0.0001 (4 decimals), for example, 10 means 0.001 (0.1%).

⚫ Input Parameters: None;

⚫ Output Parameters: the transaction service fee ratio (counted in units of 0.0001);

⚫ Method Definition: getTransferRatio() view returns (uint256);

⚫ Example:

func TestGetTransferRatio(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 transferRatio, err := instance.GetTransferRatio(nil)

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("transferRatio:", transferRatio.String())

}

2.6.2.2.8 Check the Maximum Amount of SUSD for Transfer

Users can check the maximum amount of SUSD for transfer and the service fee for running a

transfer of your input amount SUSD by calling the SUSD contract’s queryTransferLimit() method.

⚫ Input Parameters: SUSD Amount of a transfer;

⚫ Output Parameters: Service Fee, the Maximum Amount of SUSD;

⚫ Method Definition: queryTransferLimit (uint256 amount) view returns (uint256

serviceCharge, uint256 maxTransferAmount);

⚫ Example:

BSN Spartan Developer Manual

21 | 51

func TestQueryTransferLimit(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 outstruct, err := instance.QueryTransferLimit(nil, new(big.Int).SetUint64(amount))

 if err != nil {

 log.Logger.Error(err)

 }

 fmt.Println("ServiceCharge:", outstruct.ServiceCharge.String())

 fmt.Println("MaxTransferAmount:", outstruct.MaxTransferAmount.String())

}

2.6.2.2.9 Check the Maximum Amount of SUSD for Withdraw

Users can check the maximum amount of SUSD for withdraw and the service fee for ru

nning a withdraw method by calling the SUSD contract’s queryWithdrawLimit() method.

⚫ Input Parameters: None;

⚫ Output Parameters: Service Fee, the Maximum Amount of SUSD for withdraw;

⚫ Method Definition: queryWithdrawLimit() view returns (uint256 withdrawFee, uint256

 maxWithdrawAmount);

⚫ Example:

func TestQueryWithdrawLimit(t *testing.T) {

 cli, err := ethclient.Dial(NodeUrl)

 if err != nil {

 log.Logger.Error(err)

 }

 instance, err := stablecoin.NewStablecoin(common.HexToAddress(Address), cli)

 if err != nil {

 log.Logger.Error(err)

 }

 outstruct, err := instance.QueryWithdrawLimit(nil)

 if err != nil {

 log.Logger.Error(err)

 }

BSN Spartan Developer Manual

22 | 51

 fmt.Println("WithdrawFee:", outstruct.WithdrawFee.String())

 fmt.Println("MaxWithdrawAmount:", outstruct.MaxWithdrawAmount.String())

}

2.6.3 Spartan Official NFT Smart Contract

2.6.3.1 Spartan-NFT-721

2.6.3.1.1 Function Introduction

The Spartan-NFT-721 proxy contract is used to provide a complete set of APIs corresponding to

ERC-721 methods. The interfaces include functions like Spartan-NFT mint, authorization, query

authorization, transfer and destruction. The purpose of this set of contracts is to allow end-users to

directly create and manage ERC721 NFTs under the governance of BSN Foundation.

⚫ Smart contract address:

Spartan-I Chain (Powered by NC Ethereum):

0xD1A6C2dbCdbafbF0eCD033B38B83DbE0904caA4b

Spartan-II Chain (Powered by NC Cosmos):

0x8fC9EC239fe077ce57a5C5D825e47Ffc2979Fbf8

Spartan-III Chain (Powered by NC PolygonEdge):

0x55aa4279ec99E3952803b791b869B8911761f02A

⚫ Example: https://github.com/BSN-Spartan/NFT.git

2.6.3.1.2 API Definition

2.6.3.1.2.1 Mint

Users can mint NFTs by calling this interface.

⚫ Input parameters: receiver address, NFT name, NFT symbol, uri;

⚫ Output parameters: none;

⚫ Function definition: mint (address to, string memory name,string memory symbol, string

memory tokenURI);

⚫ Event parameters: 0x0 address (null address), receiver address, NFT token ID

https://github.com/BSN-Spartan/NFT.git

BSN Spartan Developer Manual

23 | 51

⚫ Event definition: Transfer (address (0), to, tokenID);

⚫ Example:

func TestMint(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.Mint(common.HexToAddress(owner), "sparton_nft", "sparton_nft", "sparton

_nft")

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.1.2.2 Safe Mint

Users can safe mint NFTs by calling this interface.

⚫ Input parameters: receiver address, NFT name, NFT symbol, uri, attached args;

⚫ Output parameters: none;

⚫ Function definition: safeMint (address to, string memory name, string memory symbol,

string memory tokenURI, bytes memory data);

⚫ Event parameters: 0x0 address (null address), receiver address, NFT token ID;

⚫ Event definition: Transfer (address (0), to, tokenID);

⚫ Example:

func TestSafeMint(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 data := []byte{0x1}

 tx, err := session.SafeMint(common.HexToAddress(owner), "sparton_nft", "sparton_nft", "sp

arton_nft", data)

 if err != nil {

BSN Spartan Developer Manual

24 | 51

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.1.2.3 NFT Authorization

An NFT owner can call this API to authorize the NFT, the sender of the transaction must be the

NFT owner.

⚫ Input parameters: authorizer’s wallet address, NFT token ID;

⚫ Output parameters: none;

⚫ Function definition: approve (address to, uint256 tokenID);

⚫ Event parameters: owner’s wallet address, authorizer’s wallet address, NFT token ID;

⚫ Event definition: Approval (operator, to, tokenID);

⚫ Example:

func TestApprove(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(1)

 tx, err := session.Approve(common.HexToAddress(account), tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.1.2.4 Query NFT Authorization

Users can call this interface to query the NFT authorization.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: authorizer’s wallet address;

⚫ Function definition: getApproved (uint256 tokenID) view returns (address);

BSN Spartan Developer Manual

25 | 51

⚫ Example:

func TestGetApproved(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(1)

 tx, err := session.GetApproved(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("Account Address: %s", tx.String()))

}

2.6.3.1.2.5 Wallet Authorization

An NFT owner can call this interface to authorize the wallet address, the sender of the transaction

must be the NFT owner.

⚫ Input parameters: authorizer’s wallet address, authorization ID;

⚫ Output parameters: none;

⚫ Function definition: setApprovalForAll (address operator, bool approved);

⚫ Event parameters: owner’s wallet address, authorizer’s wallet address, authorization ID;

⚫ Event definition: ApprovalForAll (owner, operator, approved);

⚫ Example:

func TestSetApprovalForAll(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.SetApprovalForAll(common.HexToAddress(account), true)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

BSN Spartan Developer Manual

26 | 51

2.6.3.1.2.6 Verify Wallet Authorization

Users can call this interface to verify the wallet authorization.

⚫ Input parameters: owner’s wallet address, authorizer’s wallet address;

⚫ Output parameters: Boolean value;

⚫ Function definition: isApprovedForAll (address owner, address operator) view returns (bool);

⚫ Example:

func TestIsApprovedForAll(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.IsApprovedForAll(common.HexToAddress(owner), common.HexToAddress

(account))

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("Is ApprovedForAll:%t", tx))

}

2.6.3.1.2.7 Safe Transfer

An NFT owner or authorized wallet address can call this interface to safe transfer the NFT.

⚫ Input parameters: owner’s wallet address, receiver address, NFT token ID, attached args;

⚫ Output parameters: none;

⚫ Function definition: safeTransferFrom (address from, address to, uint256 tokenID, bytes

memory data);

⚫ Event parameters: owner’s wallet address, receiver address, NFT token ID;

⚫ Event definition: Transfer (from, to, tokenID);

⚫ Example:

func TestSafeTransferFrom(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

BSN Spartan Developer Manual

27 | 51

 if err != nil {

 t.Fatal(err)

 }

 data := []byte{0x1}

 tokenId := new(big.Int).SetUint64(1)

 tx, err := session.SafeTransferFrom(common.HexToAddress(owner), common.HexToAddress

(account), tokenId, data)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.1.2.8 Transfer

An NFT owner or authorized wallet address can call this interface to transfer the NFT.

⚫ Input parameters: owner’s wallet address, receiver address, NFT token ID;

⚫ Output parameters: none;

⚫ Function definition: transferFrom (address from, address to, uint256 tokenID);

⚫ Event parameters: owner’s wallet address, receiver address, NFT token ID;

⚫ Event definition: Transfer (from, to, tokenID);

⚫ Example:

func TestTransferFrom(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TransferFrom(common.HexToAddress(owner), common.HexToAddress(acco

unt), tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

BSN Spartan Developer Manual

28 | 51

2.6.3.1.2.9 NFT Destruction

An NFT owner or authorized wallet address can call this interface to destroy the NFT.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: none;

⚫ Function definition: burn (uint256 tokenID);

⚫ Event parameters: owner’s wallet address, 0x0 address (null address), NFT token ID;

⚫ Event definition: Transfer (owner, address (0), tokenID);

⚫ Example:

func TestBurn(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(1)

 tx, err := session.Burn(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.1.2.10 Query Quantity

Users can call this interface to query the quantity of the NFTs owned by this wallet address.

⚫ Input parameters: owner’s wallet address;

⚫ Output parameters: number of NFTs;

⚫ Function definition: balanceOf (address owner) view returns (uint256);

⚫ Example:

func TestBalanceOf(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

BSN Spartan Developer Manual

29 | 51

 t.Fatal(err)

 }

 tx, err := session.BalanceOf(common.HexToAddress(owner))

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("nft amount: %s", tx))

}

2.6.3.1.2.11 Query NFT Owner

Users can call this interface to query the owner of the NFT.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: owner’s wallet address;

⚫ Function definition: ownerOf (uint256 tokenID) view returns (address);

⚫ Example:

func TestOwnerOf(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.OwnerOf(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("Owner address: %s", tx.Hash().String()))

}

2.6.3.1.2.12 Query NFT Name

Users can call this interface to query the NFT name.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: NFT name;

⚫ Function definition: tokenName (uint256 tokenID) view returns (string memory);

⚫ Example:

BSN Spartan Developer Manual

30 | 51

ffunc TestTokenName(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TokenName(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT name: %s", tx))

}

2.6.3.1.2.13 Query NFT Symbol

Users can call this interface to query the NFT symbol.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: NFT symbol;

⚫ Function definition: tokenSymbol (uint256 tokenID) view returns (string memory);

⚫ Example:

func TestTokenSymbol(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TokenSymbol(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT symbol: %s", tx))

}

2.6.3.1.2.14 Query NFT URI

Users can call this interface to query the NFT URI.

⚫ Input parameters: NFT token ID;

BSN Spartan Developer Manual

31 | 51

⚫ Output parameters: NFT URI;

⚫ Function definition: tokenURI (uint256 tokenID) view returns (string memory);

⚫ Example:

func TestTokenURI(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TokenURI(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT URI: %s", tx))

}

2.6.3.1.2.15 Query Latest Token ID

Users can call this interface to query the latest NFT token ID.

⚫ Input parameters: none;

⚫ Output parameters: latest NFT token ID;

⚫ Function definition: getLatestTokenID() view returns (uint256);

⚫ Example:

func TestGetLatestTokenID(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC721Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.GetLatestTokenID()

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tokenId: %s", tx))

}

BSN Spartan Developer Manual

32 | 51

2.6.3.2 Spartan-NFT-1155

2.6.3.2.1 Function Introduction

Spartan-NFT-1155 proxy contract is used to provide users with a set of APIs, including mint and

batch mint Spartan-NFTs under the standard of ERC1155, as well as authorization, query

authorization, transfer, batch transfer and destruction. The purpose of this set of smart contracts is

to allow end-users to directly mint ERC1155 NFTs under the governance of BSN Foundation.

⚫ Smart contract address:

Spartan-I Chain (Powered by NC Ethereum):

0xD4366bBeF0977f278A91Ae20EfE8A035690Ac90B

Spartan-II Chain (Powered by NC Cosmos):

0xD0Bf538c75310917b2C82C0a715E126783Be030F

Spartan-III Chain (Powered by NC PolygonEdge):

0x0c0f445f359eBa39935012C0EEeaFE3cA00B6BFb

⚫ Example: https://github.com/BSN-Spartan/NFT.git

2.6.3.2.2 API Definition

2.6.3.2.2.1 Safe Mint

Users can call this interface to safe mint the NFT.

⚫ Input parameters: receiver address, NFT name, NFT symbol, number of copies of the NFT,

uri, attached args;

⚫ Output parameters: none;

⚫ Function definition: safeMint (address to, string memory name, string memory symbol,

uint256 amount, string memory tokenURI, bytes memory data);

⚫ Event parameters: operator, 0x0 address (null address), receiver address, NFT token ID,

number of copies;

⚫ Event definition: TransferSingle (operator, address (0), to, tokenID, amount);

⚫ Example:

https://github.com/BSN-Spartan/NFT.git

BSN Spartan Developer Manual

33 | 51

func TestSafeMint(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 amount := new(big.Int).SetUint64(1)

 data := []byte{0x1}

 tx, err := session.SafeMint(common.HexToAddress(owner), "sparton_nft", "sparton_nft", am

ount, "sparton_nft", data)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.2 Batch Safe Mint NFT

Users can call this interface to safer mint the NFT in batch.

⚫ Input parameters: receiver address, NFT name set, NFT symbol set, number of NFT copies

set, uri set, attached args;

⚫ Output parameters: none;

⚫ Function name: safeMintBatch;

⚫ Function definition: safeMintBatch (address to, string[] memory names,string[] memory

symbols,uint256[] memory amounts,string[] memory tokenURIs,bytes memory data);

⚫ Event parameters: operator, 0x0 address (null address), receiver address, NFT token ID set,

number of copies set;

⚫ Event definition: TransferBatch (operator, address (0), to, tokenIDs, amounts);

⚫ Example:

func TestSafeMintBatch(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenName := []string{"sparton_nft_1", "sparton_nft_2"}

 tokenSymbol := []string{"sparton_nft_1", "sparton_nft_2"}

BSN Spartan Developer Manual

34 | 51

 tokenURIs := []string{"http://sparton.json", "http://sparton.json"}

 var amount []*big.Int

 amount = append(amount, new(big.Int).SetUint64(1), new(big.Int).SetUint64(1))

 data := []byte{0x1, 0x2}

 tx, err := session.SafeMintBatch(common.HexToAddress(owner), tokenName, tokenSymbol,

amount, tokenURIs, data)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.3 Wallet Authorization

NFT owner can call this interface to wallet authorization, the sender of the transaction must be the

NFT owner.

⚫ Input parameters: authorizer’s wallet address, authorization ID;

⚫ Output parameters: none;

⚫ Function definition: setApprovalForAll (address operator, bool approved);

⚫ Event parameters: NFT owner, authorizer’s wallet address, authorization ID;

⚫ Event definition: ApprovalForAll (owner, operator, approved);

⚫ Example:

func TestSetApprovalForAll(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.SetApprovalForAll(common.HexToAddress(account), true)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.4 Verify Wallet Authorization

Users can call this interface to verify the wallet authorization.

BSN Spartan Developer Manual

35 | 51

⚫ Input parameters: owner’s wallet address, authorizer’s wallet address;

⚫ Output parameters: Boolean value;

⚫ Function definition: isApprovedForAll (address owner, address operator) view returns (bool);

⚫ Example:

func TestIsApprovedForAll(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.IsApprovedForAll(common.HexToAddress(owner), common.HexToAddress

(account))

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("Is ApprovedForAll:%t", tx))

}

2.6.3.2.2.5 Safe Transfer

An NFT owner or authorized wallet address can call this interface to transfer the NFT.

⚫ Input parameters: owner’s wallet address, receiver’s wallet address, NFT token ID, number

of copies, attached args;

⚫ Output parameters: none;

⚫ Function definition: safeTransferFrom (address from, address to,uint256 tokenID,uint256

amount,bytes memory data);

⚫ Event parameters: operator, owner’s wallet address, receiver’s wallet address, NFT token

ID, number of copies;

⚫ Event definition: TransferSingle (operator, from, to, tokenID, amount);

⚫ Example:

func TestSafeTransferFrom(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

BSN Spartan Developer Manual

36 | 51

 t.Fatal(err)

 }

 data := []byte{0x1}

 tokenId := new(big.Int).SetUint64(1)

 amount := new(big.Int).SetUint64(1)

 tx, err := session.SafeTransferFrom(common.HexToAddress(owner), common.HexToAddress

(account), tokenId, amount, data)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.6 Batch Safe Transfer

An NFT owner or authorized wallet address can call this interface to transfer NFTs in batch.

⚫ Input parameters: owner’s wallet address, receiver’s wallet address, NFT token ID set,

number of copies set, attached args;

⚫ Output parameters: none;

⚫ Function definition: safeBatchTransferFrom (address from, address to, uint256[] memory

tokenIDs, uint256[] memory amounts, bytes memory data);

⚫ Event parameters: operator, owner’s wallet address, receiver’s wallet address, NFT token ID

set, number of copies set;

⚫ Event definition: TransferBatch (operator, from, to, tokenIDs, amounts);

⚫ Example:

func TestSafeBatchTransferFrom(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 var tokenIDs []*big.Int

 tokenIDs = append(tokenIDs, new(big.Int).SetUint64(1), new(big.Int).SetUint64(2))

 var amount []*big.Int

 amount = append(amount, new(big.Int).SetUint64(1), new(big.Int).SetUint64(1))

BSN Spartan Developer Manual

37 | 51

 data := []byte{0x1, 0x2}

 tx, err := session.SafeBatchTransferFrom(common.HexToAddress(owner), common.HexToAd

dress(account), tokenIDs, amount, data)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.7 NFT Destruction

An NFT owner or authorized wallet address can call this interface to destroy the NFT.

⚫ Input parameters: owner’s wallet address, NFT token ID;

⚫ Output parameters: none;

⚫ Function definition: burn (address owner, uint256 tokenID);

⚫ Event parameters: operator, owner’s wallet address, 0x0 address (null address), NFT token

ID, number of copies;

⚫ Event definition: TransferSingle (operator, owner, address (0), tokenID, amount);

⚫ Example:

func TestBurn(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(1)

 tx, err := session.Burn(common.HexToAddress(owner), tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.8 Batch Destruction

An NFT owner or authorized wallet address can call this interface to destroy NFTs in batch.

⚫ Input parameters: owner’s wallet address, NFT token ID set;

BSN Spartan Developer Manual

38 | 51

⚫ Output parameters: none;

⚫ Function definition: burnBatch (address owner, uint256[] memory tokenIDs);

⚫ Event parameters: operator, owner’s wallet address, 0x0 address (null address), NFT token

ID set, number of copies set;

⚫ Event definition: TransferBatch (operator, owner, address (0), tokenIDs, amounts);

⚫ Example:

func TestBurnBatch(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 var tokenIDs []*big.Int

 tokenIDs = append(tokenIDs, new(big.Int).SetUint64(3), new(big.Int).SetUint64(4))

 tx, err := session.BurnBatch(common.HexToAddress(owner), tokenIDs)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tx Hash: %s", tx.Hash().String()))

}

2.6.3.2.2.9 Query Number of NFT Copies

Users can call this interface to query the number of NFT copies held by this wallet address.

⚫ Input parameters: owner’s wallet address, NFT token ID;

⚫ Output parameters: number of copies;

⚫ Function definition: balanceOf (address owner, uint256 tokenID) view returns (uint256);

⚫ Example:

func TestBalanceOf(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(3)

BSN Spartan Developer Manual

39 | 51

 tx, err := session.BalanceOf(common.HexToAddress(owner), tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("Account balance: %s", tx))

}

2.6.3.2.2.10 Batch Query the Number of NFT Copies

Users can call this interface to query the number of NFT copies held by this wallet address in

batches.

⚫ Input parameters: owner’s wallet address set, NFT token ID set;

⚫ Output parameters: number of copies set;

⚫ Function definition: balanceOfBatch (address[] memory owners,uint256[] memory tokenIDs)

view returns (uint256[] memory);

⚫ Example:

func TestBalanceOfBatch(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 var tokenIDs []*big.Int

 tokenIDs = append(tokenIDs, new(big.Int).SetUint64(3), new(big.Int).SetUint64(4))

 var owners []common.Address

 owners = append(owners, common.HexToAddress(owner), common.HexToAddress(account))

 tx, err := session.BalanceOfBatch(owners, tokenIDs)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("owners balance: %s", tx))

}

2.6.3.2.2.11 Query NFT Name

Users can call this interface to query the name of the NFT.

⚫ Input parameters: NFT token ID;

BSN Spartan Developer Manual

40 | 51

⚫ Output parameters: NFT name;

⚫ Function definition: tokenName (uint256 tokenID) view returns (string memory);

⚫ Example:

func TestTokenName(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(3)

 tx, err := session.TokenName(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT name: %s", tx))

}

2.6.3.2.2.12 Query NFT Symbol

Users can call this interface to query the NFT symbol.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: NFT symbol;

⚫ Function definition: tokenSymbol (uint256 tokenID) view returns (string memory);

⚫ Example:

func TestTokenSymbol(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TokenSymbol(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT symbol: %s", tx))

}

BSN Spartan Developer Manual

41 | 51

2.6.3.2.2.13 Query NFT URI

Users can call this interface to query the NFT URI.

⚫ Input parameters: NFT token ID;

⚫ Output parameters: NFT URI;

⚫ Function definition: tokenURI (uint256 tokenID) view returns (string memory);

⚫ Example:

func TestTokenURI(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tokenId := new(big.Int).SetUint64(2)

 tx, err := session.TokenURI(tokenId)

 if err != nil {

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("NFT URI: %s", tx))

}

2.6.3.2.2.14 Query the Latest NFT Token ID

Users can call this interface to query the latest NFT token ID.

⚫ Input parameters: none;

⚫ Output parameters: Latest NFT token ID;

⚫ Function definition: getLatestTokenID() view returns (uint256);

⚫ Example:

func TestGetLatestTokenID(t *testing.T) {

 cli := server.NewETHClientByURL(t, url, key)

 session, err := e.NewERC1155Session(cli, common.HexToAddress(Address))

 if err != nil {

 t.Fatal(err)

 }

 tx, err := session.GetLatestTokenID()

 if err != nil {

BSN Spartan Developer Manual

42 | 51

 t.Fatal(err)

 }

 fmt.Println(fmt.Sprintf("tokenId: %s", tx))

3 Information on the Non-Cryptocurrency Public Chains

A Non-Cryptocurrency Public Chain is a transformed public chain framework based on an existing

public chain. Gas Credit transfers are not permitted between standard wallets. There are no

cryptocurrency incentives for mining or participating in consensus. On Spartan Network, there are

three Non-Cryptocurrency Public Chains at launch. We expect to add more in the foreseeable

future.

3.1 Spartan-I Chain (Powered by NC Ethereum)

3.1.1 About Spartan-I Chain (Powered by NC Ethereum)

The Spartan-I Chain is a blockchain compatible with Ethereum that runs independently from the

public Ethereum blockchain. Full Nodes, which can freely join and exit the Spartan Network,

synchronize block information of the entire chain and submit transaction requests to the network.

A Spartan-I full node runs an EVM (Ethereum Virtual Machine) that allows developers to use

Solidity programming language to create smart contracts that are compatible with the Ethereum

network. Also, all the different tools and wallets available for Ethereum (such as Truffle, HardHat,

Metamask, etc…) can be directly used with Spartan-I Chain.

Ethereum-based networks have two identifiers, a network ID and a chain ID. Although they often

have the same value, they have different uses. Peer-to-peer communication between nodes uses

the network ID, while the transaction signature process uses the chain ID.

Spartan-I Chain Network Id = Chain Id = 9090

For detailed installation documentation, please refer to GitHub.

3.1.2 Ethereum and Geth Documentation

Below is a list of useful online documentation about Ethereum and Geth.

How to set up Geth and execute some basic tasks using the command line tools.

https://geth.ethereum.org/docs/getting-started

https://github.com/BSN-Spartan/NC-Ethereum/blob/main/README.md
https://geth.ethereum.org/docs/getting-started

BSN Spartan Developer Manual

43 | 51

JSON-RPC API methods Interacting with Geth requires sending requests to specific JSON-RPC

API methods. Geth supports all standard JSON-RPC API endpoints. You can send RPC requests

on the port 8545.

https://geth.ethereum.org/docs/rpc/server

Developer Documentation

This documentation is designed to help users build with Ethereum. It covers Ethereum as a concept,

explains the Ethereum tech stack, and documents advanced topics for more complex applications

and use cases.

https://ethereum.org/en/developers/docs/

Smart Contract tutorials

A list of curated Ethereum tutorials to learn about coding smart contracts and DApps.

https://ethereum.org/en/developers/tutorials/

Solidity Lang

https://docs.soliditylang.org/

Web3j Document

https://docs.web3j.io/

Web3.js

https://web3js.readthedocs.io/en/v1.7.5/

3.2 Spartan-II Chain (Powered by NC Cosmos)

3.2.1 About Spartan-II Chain (Powered by NC Cosmos)

The Spartan-II Chain is a Cosmos-based network which has two identifiers, a network ID and a

chain ID. Although they often have the same value, they have different uses. Peer-to-peer

communication between nodes uses the network ID, while the transaction signature process uses

the chain ID.

EVM module: Network ID = Chain ID = 9003

Native module: Network ID = Chain Id = starmint

https://geth.ethereum.org/docs/rpc/server
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/tutorials/

BSN Spartan Developer Manual

44 | 51

For detailed installation instructions, please refer to GitHub.

3.2.2 Resources

To find out more about Spartan-II Chain (Powered by NC Cosmos), visit GitHub.

API Introduction

https://github.com/BSN-Spartan/NC-Cosmos/tree/main/docs/endpoints

CLI Client Commands

https://github.com/BSN-Spartan/NC-Cosmos/tree/main/docs/cli-client

Solidity Lang

https://docs.soliditylang.org/

Web3j Document

https://docs.web3j.io/

Spartan-II Chain GoLang SDK

https://github.com/BSN-Spartan/nc-cosmos-sdk-go

3.3 Spartan-III Chain (Powered by NC PolygonEdge)

3.3.1 About Spartan-III Chain (Powered by NC PolygonEdge)

The Spartan-III Chain (Powered by NC PolygonEdge) network has two identifiers, a network ID

and a chain ID. Although they often have the same value, they have different uses. Peer-to-peer

communication between nodes uses the network ID, while the transaction signature process uses

the chain ID.

Spartan-III Chain Network Id = Chain Id = 5566

For detailed installation instructions, please refer to GitHub.

3.3.2 Resources

JSON-RPC Commands

NC PolygonEdge is compatible with ETH JSON RPC interface, please refer to the detailed

interface list from below link.

https://github.com/BSN-Spartan/NC-Cosmos/blob/main/README.md
https://github.com/BSN-Spartan/NC-Cosmos/tree/main/docs
https://github.com/BSN-Spartan/NC-PolygonEdge/blob/main/README.md

BSN Spartan Developer Manual

45 | 51

https://docs.polygon.technology/docs/edge/get-started/json-rpc-commands

CLI Commands

NC PolygonEdge provides a wealth of CLI commands for managing your nodes. For a detailed

command list, please refer to the link below.

https://docs.polygon.technology/docs/edge/get-started/cli-commands

Prometheus Metrics

PolygonEdge can report and serve the Prometheus metrics, which in their turn can be consumed

using Prometheus collector(s).

The following is a detailed description reference.

https://docs.polygon.technology/docs/edge/configuration/prometheus-metrics

Backup/Restore Node Instance

This guide goes into detail on how to back up and restore a PolygonEdge node instance. It covers

the base folders and what they contain, as well as which files are critical for performing a

successful backup and restore.

For detailed operation, please refer to the link below.

https://docs.polygon.technology/docs/edge/working-with-node/backup-restore

Polygon Edge API

https://docs.polygon.technology/docs/edge/get-started/json-rpc-commands

How to Use Smart Contracts

https://docs.polygon.technology/docs/category/smart-contracts

Solidity Lang

https://docs.soliditylang.org/

Web3j Document

https://docs.web3j.io/

Web3.js

https://docs.polygon.technology/docs/edge/get-started/json-rpc-commands
https://docs.polygon.technology/docs/edge/get-started/cli-commands
https://docs.polygon.technology/docs/edge/configuration/prometheus-metrics
https://docs.polygon.technology/docs/edge/working-with-node/backup-restore

BSN Spartan Developer Manual

46 | 51

https://web3js.readthedocs.io/en/v1.7.5/

4 FAQs

4.1 Frequently Asked Questions

Find answers and solutions for commonly seen errors and areas of confusion within our curated

series of FAQ articles.

Don't see your question answered here? Please contact us.

4.2 What is NTT?

A Non-Tradable Token (NTT) is a non-transferable network utility token that is issued on the

default chain of the BSN Spartan Network. Each BSN Spartan data center has only one registered

NTT wallet to manage and hold NTT, which can be purchased with fiat currency or designated

stablecoins or acquired through incentive programs. NTT must be used to purchase Gas Credits on

any NC Public Chain of the BSN Spartan Network. NTT can neither be traded nor transferred

between data centers.

4.3 What is an NTT Wallet?

As a special Default Chain wallet, the NTT Wallet refers to the only wallet address owned by the

Virtual Data Center Operator on the BSN Spartan Network, which can be used to purchase Gas

Credits with NTT or receive NTT incentives.

4.4 What is a Wallet Address?

In Spartan Non-Cryptocurrency Public Chains, a Wallet Address is a Gas Credit receiving address,

which is a unique sequence of hexadecimal numbers.

4.5 What is a Private Key?

A private key is a secret number that is used in cryptography, similar to a password. In

cryptocurrency, private keys are also used to sign transactions and prove ownership of a blockchain

address.

4.6 What is a Spartan Virtual Data Center?

https://spartan.bsnbase.io/#ContactUs

BSN Spartan Developer Manual

47 | 51

A Spartan Virtual Data Center is a set of locally installed software systems that contains one or

more registered full nodes of different NC Public Chains. Each Virtual Data Center has one NTT

wallet and is eligible to receive Node Establishment and Data Center Monthly Incentives.

4.7 What is Gas Credit?

In a similar fashion to cryptocurrencies, Gas Credits are used as a means of paying Gas fees on

NC Public Chains. However, Gas Credits cannot be transferred between standard wallets. Only

the Data Center Operator 's NTT wallet can be used to purchase Gas Credits with NTT.

	1 Overview
	1.1 What is BSN Spartan
	1.1.1 Glossary
	1.1.2 What is blockchain
	1.1.3 What is Non-Cryptocurrency Public Chain
	1.1.4 What is Default Chain
	1.1.5 What is a Wallet
	1.1.6 Full Node & Consensus Node

	1.2 Roles
	1.2.1 Data Center Operator
	1.2.2 Foundation Member
	1.2.3 End-user

	1.3 Why BSN Spartan
	1.3.1 Public vs. Private
	1.3.2 Cryptocurrency vs. Non-Cryptocurrency
	1.3.3 Centralized vs. Decentralized
	1.3.4 Blockchain vs. Infrastructure

	2 Getting Started
	2.1 Get a Wallet Address
	2.1.1 An Existing secp256k1 Wallet Address
	2.1.2 Using MetaMask

	2.2 Get Chain Access Information
	2.3 Gateway Access Instruction
	2.3.1 Key Parameters
	2.3.2 Gateway Request Format
	2.3.2.1 HTTP Request
	2.3.2.2 WebSocket Request
	2.3.2.3 gRPC Request

	2.4 Top Up Gas Credit
	2.4.1 Check the email of Submitted Order
	2.4.2 Check the email of Successful Payment
	2.4.3 Check the email of Successful Top-up
	2.4.4 Check the Currency or USDC Refund (If Top-up Failed)

	2.5 Contract Marketplace
	2.5.1 BSN Official Contract Services
	2.5.2 BSN Certified Smart Contracts
	2.5.3 BSN Beginner Smart Contracts
	2.5.4 BSN Smart Contract Open Market

	2.6 Spartan Official Smart Contracts (Optional)
	2.6.1 Spartan DID
	2.6.1.1 Overview
	2.6.1.2 Roles
	2.6.1.3 Components
	2.6.1.4 Functions and features

	2.6.2 SpartanUSD Stablecoin Smart Contract
	2.6.2.1 Basic Information
	2.6.2.2 Common Functions
	2.6.2.2.1 Mint SpartanUSD
	2.6.2.2.2 Transfer SpartanUSD
	2.6.2.2.3 Withdraw SpartanUSD
	2.6.2.2.4 Check SpartanUSD Balance
	2.6.2.2.5 Check the Circulation of SpartanUSD
	2.6.2.2.6 Check the Maximum Transaction Service Fee
	2.6.2.2.7 Check the Transaction Service Fee Ratio
	2.6.2.2.8 Check the Maximum Amount of SUSD for Transfer
	2.6.2.2.9 Check the Maximum Amount of SUSD for Withdraw

	2.6.3 Spartan Official NFT Smart Contract
	2.6.3.1 Spartan-NFT-721
	2.6.3.1.1 Function Introduction
	2.6.3.1.2 API Definition
	2.6.3.1.2.1 Mint
	2.6.3.1.2.2 Safe Mint
	2.6.3.1.2.3 NFT Authorization
	2.6.3.1.2.4 Query NFT Authorization
	2.6.3.1.2.5 Wallet Authorization
	2.6.3.1.2.6 Verify Wallet Authorization
	2.6.3.1.2.7 Safe Transfer
	2.6.3.1.2.8 Transfer
	2.6.3.1.2.9 NFT Destruction
	2.6.3.1.2.10 Query Quantity
	2.6.3.1.2.11 Query NFT Owner
	2.6.3.1.2.12 Query NFT Name
	2.6.3.1.2.13 Query NFT Symbol
	2.6.3.1.2.14 Query NFT URI
	2.6.3.1.2.15 Query Latest Token ID

	2.6.3.2 Spartan-NFT-1155
	2.6.3.2.1 Function Introduction
	2.6.3.2.2 API Definition
	2.6.3.2.2.1 Safe Mint
	2.6.3.2.2.2 Batch Safe Mint NFT
	2.6.3.2.2.3 Wallet Authorization
	2.6.3.2.2.4 Verify Wallet Authorization
	2.6.3.2.2.5 Safe Transfer
	2.6.3.2.2.6 Batch Safe Transfer
	2.6.3.2.2.7 NFT Destruction
	2.6.3.2.2.8 Batch Destruction
	2.6.3.2.2.9 Query Number of NFT Copies
	2.6.3.2.2.10 Batch Query the Number of NFT Copies
	2.6.3.2.2.11 Query NFT Name
	2.6.3.2.2.12 Query NFT Symbol
	2.6.3.2.2.13 Query NFT URI
	2.6.3.2.2.14 Query the Latest NFT Token ID

	3 Information on the Non-Cryptocurrency Public Chains
	3.1 Spartan-I Chain (Powered by NC Ethereum)
	3.1.1 About Spartan-I Chain (Powered by NC Ethereum)
	3.1.2 Ethereum and Geth Documentation

	3.2 Spartan-II Chain (Powered by NC Cosmos)
	3.2.1 About Spartan-II Chain (Powered by NC Cosmos)
	3.2.2 Resources

	3.3 Spartan-III Chain (Powered by NC PolygonEdge)
	3.3.1 About Spartan-III Chain (Powered by NC PolygonEdge)
	3.3.2 Resources

	4 FAQs
	4.1 Frequently Asked Questions
	4.2 What is NTT?
	4.3 What is an NTT Wallet?
	4.4 What is a Wallet Address?
	4.5 What is a Private Key?
	4.6 What is a Spartan Virtual Data Center?
	4.7 What is Gas Credit?

